

NAMIBIA UNIVERSITY

OF SCIENCE AND TECHNOLOGY

FACULTY OF HEALTH, NATURAL RESOURCES AND APPLIED SCIENCES SCHOOL OF NATURAL AND APPLIED SCIENCES DEPARTMENT OF BIOLOGY, CHEMISTRY AND PHYSICS

QUALIFICATION : BACHELOR OF SCIENCE (HONOURS)		
QUALIFICATION CODE: 08BOSC LEVEL: 8		
COURSE CODE: BIO811S	COURSE NAME: BIOINFORMATICS	
SESSION: JULY 2023	PAPER: THEORY	
DURATION: 3 HOURS	MARKS: 120	

SECOND OPPORTUNITY/SUPPLEMENTARY EXAMINATION QUESTION PAPER		
EXAMINER(S)	Prof Percy Chimwamurombe	
MODERATOR:	Dr Jean-Damascene Uzabakiriho	

	INSTRUCTIONS	
1.	Answer ALL the questions.	
2.	Write clearly and neatly.	
3.	Number the answers clearly.	

PERMISSIBLE MATERIALS

Non-programmable Calculators

ATTACHMENTS

None

THIS QUESTION PAPER CONSISTS OF 2 PAGES (Including this front page)

SECTION A: [60 MARKS]

1.	. Using examples, write short notes on the following term used in			
	Bioinformatics:			

a.	BLAT	(5 marks)
b.	BLOB	(5 marks)
c.	Phylogenetic tree	(5 marks)
d.	Gene ontology	(5 marks)
e.	Banklt	(5 marks)
f.	FASTA.	(5 marks)

- 2. Give a practical use of genomic circuits in single genes. (10 marks)
- Use the example of a human disease complex to describe the concept of integrating single gene circuits. (10 marks)
- 4. Describe any complex gene circuits, which you have studied. (10 marks)

Section B: Essays

[60 MARKS]

- Describe the lactose operon and how it can be used to explain
 a single gene circuit. (30 marks)
- 2. Write a detailed essay on BLAST. (30 marks)